

Cleanroom Technology

Fundamentals of Design, Testing and Operation

Cleanroom Technology

Cleanroom Technology

Fundamentals of Design, Testing and Operation

W. Whyte University of Glasgow, UK

JOHN WILEY & SONS, LTD Chichester • New York • Weinheim • Brisbane • Singapore • Toronto Copyright © 2001 W. Whyte Published by John Wiley & Sons Ltd, Baffins Lane, Chichester, West Sussex PO19 1UD, England National 01243 779777 International (+44) 1243 779777

e-mail (for order and customer service enquiries): cs-books@wiley.co.uk

Visit our Home Page on http://www.wiley.co.uk or http://www.wiley.com

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency, 90 Tottenham Court Road, London, UK W1P 9HE, without the permission in writing of the author.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

WILEY-VCH Verlag GmbH, Pappelallee 3, D-69469 Weinheim, Germany

Jacaranda Wiley Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0 471 86842 6

Produced from computer files supplied by the author Printed and bound in Great Britain by Biddles Ltd, Guildford and King's Lynn This book is printed on acid-free paper responsibly manufactured from sustainable forestry, in which at least two trees are planted for each one used for paper production.

Contents

Pref	eface	xiii
Ackı	knowledgements	xiv
1 T	T t o du otio u	1
	Introduction	ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ
1.1	The Need for Clean rearrant	1
1.2	2 The Need for Cleanrooms	ند ج
1.5	5 Types of Cleanrooms	
1.5	5 what is Cleanroom Technology?	•••••••••••••••••••••••••••••••••••••••
2 T	The History of Cleanrooms	9
2.1	I The Early Years	9
2.2	2 Ventilated Operating Rooms	
2.3	3 Early Industrial Cleanrooms	
2.4	4 Unidirectional Flow Cleanrooms	
2 (Cleanroom Classification Standards	21
31	1 The History	21
2.1	The Basis of Cleanroom Standards	
22	2 Federal Standard 200	
5.5	3.3.1 The earlier Federal Standards 209 (A to D)	24
3	3.3.2 Federal Standard 200 F	
31	1 ISO Standard 14644-1	
2.5	5 Pharmaceutical Cleanroom Classification	30
3.5	3.5.1 European Union Guide to Good Manufacturing	Practice 30
3	3.5.1 European Onion Guide to Good managacia mg	v
5	J.s.2. Guideline on Sterile Drug Troumers Troumeru o	, 33
	Aseptic 1 rocessing	
4 I	Information Sources	
4.1	1 The International Confederation of Contamination Co	ontrol
	Societies (ICCCS)	
4.2	2 International Cleanroom Standards	
4	4.2.1 ISO standards	
4	4.2.2 Federal Standard 209E	
4	4.2.3 Pharmaceutical standards	
4.3	3 Cleanroom Books	

4.4	Recommended Practices and Guides of the I	nstitute of Environmental
	Sciences and Technology (IEST)	
4	4.4.1 IEST Recommended Practices (RPs)	
4	4.4.2 IEST Guides	
4.5	5 Cleanroom Journals and Magazines	47
4	4.5.1 Free distribution	
4	4.5.2 Journals and magazines available on st	ubscription 49
4.6	5 Sources of Pharmaceutical Cleanroom Docu	ments 50
4.7	7 International Cleanroom Forum	
5	The Design of Turbulently Ventilated and A	Ancillary Cleanrooms 53
5.1	Turbulently Ventilated Cleanrooms	
	5.1.1 Air supply	
	5.1.2 High efficiency air filters	
	5.1.3 Air movement within a turbulently vent	ilated cleanroom57
	5.1.4 Room pressurisation and air movement	t control between rooms 59
	5.1.5 Construction materials and finishes	
5.2	2 Ancillary Cleanrooms	
	5.2.1 Clothing change area	
	5.2.2 Materials transfer area	
5.3	3 Containment Rooms	
6	Design of Unidirectional Cleanrooms and C	Clean Air Devices
61	1 Unidirectional Cleanrooms	
0.1	6.1.1 Vertical flow unidirectional cleanroom	73
	6.1.2 Horizontal flow unidirectional flow roo	
	6.1.3 Unidirectional flow rooms used in sem	iconductor manufacturing 76
6.2	2 Clean Air Devices	
•	6.2.1 Unidirectional air devices	
	6.2.2 Isolators and minienvironments	
7	Construction Materials and Surface Finish	es
, 71	1 General Requirements	
7.2	2 Conventional Building Techniques	
73	3 Modular Construction	
,.5	7 3 1 Studless wall systems	
	7.3.2 Framed wall systems	

7.4	Doors and Widows	. 98
7.5	Floors	. 98
7.6	Ceilings	. 99
7.7	Outgassing and Electrostatic Properties	100
8 1	High Efficiency Air Filtration	103
8.1	Air Filters Used in Cleanrooms	103
8.2	The Construction of High Efficiency Filters	104
8.3	Particle Removal Mechanisms	106
8.4	Testing of High Efficiency Filters	109
8	8.4.1 Military Standard 282	109
ð	8.4.2 Sodium Flame Test (Eurovent 4/4)	110
ð	8.4.3 Institute of Environmental Sciences (IEST) Recommended	
	Practice 'Testing ULPA Filters'	110
8	8.4.4 European Standard (EN 1822)	110
8.5	Probe (Scan) Testing of High Efficiency Filters	111
8.6	Filter Housings for High Efficiency Filters	112
9 (Cleanroom Testing and Monitoring	115
9.1	Principles of Cleanroom Testing	116
9.2	Cleanroom Tests	116
ç	9.2.1 Air supply and extract quantities	117
Ģ	9.2.2 Air movement control between areas	117
ç	9.2.3 Filter installation leak test	118
9	9.2.4 Containment leak testing	118
9	9.2.5 Air movement control within the room	118
9	9.2.6 Airborne particles and microbial concentrations	118
ç	9.2.7 Additional tests	118
9.3	Testing in Relation to Room Type and Occupation State	119
9.4	Re-testing to Demonstrate Compliance	120
9	9.5 Monitoring of Cleanrooms	121
10	Measurement of Air Quantities and Pressure Differences	123
10.1	Air Quantities	123
j	10.1.1 Measuring air quantities from within a cleanroom	124
j	10.1.2 Anemometers	125
10.2	2 Differential Pressure Tests	127

10.2.1 Apparatus for measuring pressure differences	28 29
11 Air Maxament Control Potwar and Within Cleannams	21
11 All Movement Control Detween and Within Clean construction 13	, I 1
11.1.1 Methods of checking infiltration	22
11.2 Air Movement Control within a Cleanroom	23
11.2.1 Air movement visualisation	34
11.3 Recovery Test Method	39
12 Filter Instelletion Look Testing	11
12 Fliter Installation Leak Testing)] 1/1
12.1 The Use of Aerosof Test Challenges	14
12.2 Artificial Smoke and Particle Test Challenges	15
12.2.1 Cola-generated outs	16
12.2.2 Hol generaled smokes	17
12.2.5 Folyslyrene latex spheres	17
12.3 1 Photometer 14	17
12.3.1 Single particle counters	18
12.5.2 Single purifie counters and Filter Housings	19
12.4 1 Scanning methods 14	19
12.1.1 Section filters in unidirectional flow rooms	50
12.1.2 Fishing filters in annual centronally ventilated room	51
12.4.4 Repair of leaks	51
12 Abda and Braticle Counts	-
13 Airborne Particle Counting	52
13.1 Airborne Particle Counters	55
13.2 Continuous Monitoring Apparatus for Airborne Particles	50
13.4 Massurement of Particle Concentrations (ISO 14644.1)	>0 50
13.4 1 Sample locations and number	so
13.4.2 Airborne sampling volume	51
13.4.3 Accentance criteria	52
13.5 Worked Example of ISO 14644-1 Test Method	52
13.5.1 Number of locations	52
13.5.2 Minimum air sampling volume	53
13.5.3 Sampling results	53

14 Microbial Counts	167
14.1 Microbial Sampling of the Air	167
14.1.1 Impaction onto agar	168
14.2 Microbial Deposition onto Surfaces	171
14.2.1 Settle plate sampling	171
14.2.2 Calculation of the likely airborne contamination	172
14.3 Microbial Surface Sampling	173
14.3.1 Contact surface sampling	173
14.3.2 Swabbing	174
14.4 Personnel sampling	175
15 Operating a Cleanroom: Contamination Control	177
15.1 Step 1: Identification of Sources and Routes of Contamination	178
15.1.1 Sources of contamination	178
15.1.2 Airborne and contact routes of transfer	179
15.1.3 Construction of a risk diagram	180
15.2 Step 2: Assessment of the Importance of Hazards	182
15.3 Step 3: Identification of Methods to Control Hazards	185
15.4 Step 4: Sampling Methods to Monitor Hazards and Control Method	ls 186
15.5 Step 5: Establishing a Monitoring Schedule with Alert and Action	
Levels	189
15.6 Step 6: Verification and Reappraisal of the System	190
15.7 Step 7: Documentation	190
15.8 Step 8: Staff Training	191
16 Cleanroom Disciplines	193
16.1 People Allowed into Cleanrooms.	193
16.2 Personal Items Not Allowed into the Cleanroom.	196
16.3 Disciplines within the Cleanroom	196
16.3.1 Air transfer	196
16.3.2 Personnel behaviour	198
16.3.3 Handling materials	206
16.4 Maintenance and Service Personnel	206
17 Entry and Exit of Personnel	209
17.1 Prior to Arriving at the Cleanroom	210
17.2 Changing into Cleanroom Garments	210

17.2.1. Approaching the pre-change zone	211
17.2.2 Pre-change zone	213
17.2.3. Changing zone	215
17.2.4 Cleanroom entrance zone	217
17.3 Exit Changing Procedures.	220
18 Materials, Equipment and Machinery	223
18.1 Choice of Materials	223
18.2 Items Supplied from Outside Manufacturing Sources	225
18.3 Wrapping Materials	226
18.4 Transfer of Materials and Small Pieces of Equipment through	
an Airlock	228
18.4.1 Transfer area with a bench	229
18.4.2 Transfer area without a bench	232
18.5 Entry of Machinery	233
18.6 Transfer of Materials through Hatches and Sterilisers	235
19 Cleanroom Clothing	237
10.1 Sources and Routes of Inert Particle Dispersion	238
10.1.1 Sources of particles and mechanisms of release	239
19.1.2 Routes of transfer of particles	242
19.2 Routes and Sources of Microbial Dispersion	243
19.2 1 Sources of micro-organisms	241
19.2.7 Sources of microbial dispersion	244
19.3 Types of Cleanroom Clothing	. 245
19.3 1 Clothing designs	245
19.3.2 Cleanroom fabrics	246
19.3.3 Garment construction	249
1934 Choice of garments	249
19.3.5 Comfort	. 251
19.4 Processing of Cleanroom Garments and Change Frequency	. 252
19.4.1 Processing	. 252
19.4.2 Frequency of change	. 255
19.5 The Effect of Laundering and Wear	. 256
19.6 Testing of Cleanroom Clothing	. 256
19.6.1 Fabric tests	. 257
19.6.2 Dispersal of airborne bacteria and particles	. 257

19.7 Stat	tic Dissipative Properties of Clothing	261
20 Clear	nroom Masks and Gloves	263
20.1 Cle	anroom Masks	263
20.1.1	Dispersion from the mouth	263
20.1.2	Face masks	266
20.1.3	Powered exhaust headgear	268
20.2 Cle	anroom Gloves	269
20.2.1	Hand contamination and gloves	269
20.2.2	Glove manufacturing process	270
20.2.3	Types of gloves	270
20.2.4	Testing of Gloves	272
21 Clear	ning a Cleanroom	275
21.1 Wh	v a Cleanroom Must be Cleaned	275
21.2 Cle	aning Methods and the Physics of Cleaning Surfaces	276
21.2.1	Vacuuming	277
21.2.2	Wet wiping	278
21.2.3	Tacky rollers	278
21.3 Imp	blements Used to Clean Cleanrooms	279
21.3.2	Dry and wet vacuum systems	279
21.3.2	Moping systems	280
21.3.3	Wipers	283
21.3.4	Tacky rollers	285
21.3.5	Floor scrubbing systems	286
21.4 Lig	uids Used in Cleaning Cleanrooms	286
21.4.1	Cleaning liquids	286
21.4.2	Disinfectants	288
21.5 Ho	w Should a Cleanroom be Cleaned?	290
21.5.1	General points	290
21.5.2	Cleaning methods with respect to area type	291
21.5.3	Cleaning methods	293
21.6 Tes	t Methods	295
Index		297

Preface

The dirt and bacterial-free conditions provided by cleanrooms are essential for much of modern manufacturing industry. Without clean conditions, products get contaminated and either malfunction or become hazardous to people. In recent years there has been a considerable increase in the number of cleanrooms. They are now used for the manufacture of items used in computers, cars, aeroplanes, spacecraft, televisions, disc players and many other electronic and mechanical devices, as well as the manufacture of medicines, medical devices and convenience foods. This rapid increase in the use of cleanrooms has created a demand for good quality information about cleanrooms that is free from the 'hype' of sales and marketing jargon. Information is also required to teach production personnel about their working environment, and how to conduct themselves within the cleanroom to minimise contamination.

Cleanroom technology can be divided into three parts: design, testing and operation. Cleanrooms have to be first designed and constructed; they then have to be tested to ensure they achieve their design specification and continue to do so; finally they have to be operated in such a way as to minimise contamination. This book covers, in a holistic way, these three main facets of cleanroom technology.

This book has been written using the principals generally accepted within cleanroom industries. However, I have found many areas where no sound advice exists and have had to develop guidance using my knowledge and experience. Because of this, I have tried wherever possible to give the scientific reasons for the contamination control measures suggested, so that the worth of my opinions may be judged. However, many of the principals are one man's opinion, and this should be borne in mind.

This book is intended for anyone involved with cleanrooms who wishes an overview of the fundamentals of cleanroom design, testing and operation. However, it is inevitable that with my teaching background I would wish to help those who instruct, or are about to instruct, the subject of 'Cleanroom Technology' either at college, or to their cleanroom personnel. I hope the information given in this book is helpful in achieving these requirements.

Acknowledgements

During my many years of involvement with cleanrooms I have been fortunate to meet many of the people who pioneered and developed cleanroom technology. Many of them I now consider as friends. From these people I received information that assisted me during my career; it is from my career experience that this book has been written. It would be impossible to name all of these people, and they must forgive me if they see an idea that they know was theirs. I must confine myself to acknowledging the help of those people who directly contributed to this book. This contribution has been in the nature of: being a co-author of an article that I have used when writing this book; reading and commenting on a chapter; helping in producing photographs. These people are (in alphabetical order) Neil Bell, Chuck Bernt, Roger Diener, Gordon Farquharson, Gordon King, Lynn Morrison, Bob Peck, Martin Reeves, Hal Smith and Neil Stephenson. I should also like to acknowledge the support of the Scottish Society for Contamination Control.

The photographs on the cover of this book are reproduced by permission of Aberdeen City Council, Library and Information Service, Pentagon Technology, Analog Devices and Evanite Fiber Corporation. The permission to use other photographs, tables and drawings used within the book is acknowledged at the end of each chapter. Isabelle Lawson produced most of the drawings in this book, and Barbara McLeod read and commented on the script.

1

Introduction

1.1 What is a Cleanroom?

It is clear that a cleanroom is a room that is clean. However, a cleanroom now has a special meaning and it is defined in the International Organization for Standarization (ISO) standard 14644-1 as:

A room in which the concentration of airborne particles is controlled, and which is constructed and used in a manner to minimise the introduction, generation, and retention of particles inside the room and in which other relevant parameters, e.g. temperature, humidity, and pressure, are controlled as necessary.

The first two thirds of the definition is, in essence, what a cleanroom is. It is a room that minimises the introduction, generation and retention of particles. This is achieved, firstly, by supplying it with exceptionally large quantities of air that has been filtered with high efficiency filters. This air is used to (1) dilute and remove the particles and bacteria dispersed from personnel and machinery within the room and, (2) to pressurise the room and ensure that no dirty air flows into the cleanroom. Secondly, a cleanroom is built with materials that do not generate particles and can be easily cleaned. Finally, cleanroom personnel use clothing that envelops them and minimises their dispersion of particles and micro-organisms. These and other similar measures that minimise the introduction, generation and retention of contamination in a cleanroom are discussed in this book. Cleanrooms can also control the temperature, humidity, sound, lighting, and vibration. However, these parameters are not exclusive to cleanrooms, and are therefore not discussed in any detail in this book.

Figure 1.1 A cleanroom with personnel wearing special cleanroom clothing.

1.2 The Need for Cleanrooms

The cleanroom is a modern phenomenon. Although the roots of cleanroom design and management go back for more than 100 years and are rooted in the control of infection in hospitals, the need for a clean environment for industrial manufacturing is a requirement of modern society. Cleanrooms are needed because people, production machinery and the building structure generate contamination. As will be discussed later in this book, people and machinery produce millions of particles, and conventional building materials can easily break up. A cleanroom controls this dispersion and allows manufacturing to be carried out in a clean environment.

The uses of cleanrooms are diverse; shown in Table 1.1 is a selection of products that are now being made in cleanrooms.

Industry	Product		
Electronics Computers, TV-tubes, flat screens			
Semiconductor	Production of integrated circuits used in computer memory and control		
Micromechanics	Gyroscopes, miniature bearings, compact disc players		
Optics	Lenses, photographic film, laser equipment		
Biotechnology	Antibiotic production, genetic engineering		
Pharmacy	Sterile pharmaceuticals, sterile disposables		
Medical Devices Heart valves, cardiac by-pass systems			
Food and Drink Brewery production, unsterilized foo drink			

Table 1	.1	Some	cleanroom	app	lications
Table 1		Some	cleantoonn	app	neauons

It may be seen in Table 1.1 that cleanroom applications can be broadly divided into two. In the top section of Table 1.1 are those industries where dust particles are a problem, and their presence, even in sub-micrometre size, may prevent a product functioning, or reduce its useful life.

Figure 1.2 Contaminating particle on a semiconductor

A major user of cleanrooms is the semiconductor fabrication industry, where processors are produced for use in computers, cars and other machines. Figure 1.2 shows a photomicrograph of a semiconductor with a particle on it. Such particles can cause an electrical short and ruin the semiconductor. To minimise contamination problems, semiconductors are manufactured in cleanrooms with very high standards of cleanliness.

The bottom section of Table 1.1 shows manufacturers who require the absence of micro-organisms, as their growth in a product (or in a hospital patient) could lead to human infection. The healthcare industry is a major user of cleanrooms, as micro-organisms or dirt must not be injected or infused into patients through their products. Hospital operating rooms also use cleanroom technology to minimise wound infection (Figure 1.3).

Figure 1.3 Unidirectional flow system in an operating room

It may also be seen from Table 1.1 that many of the examples are recent innovations and this list will certainly be added to in the future, there being a considerable and expanding demand for these type of rooms.

1.3 Types of Cleanrooms

Cleanrooms have evolved into two major types and they are differentiated by their method of ventilation. These are *turbulently ventilated* and *unidirectional flow cleanrooms*. Turbulently ventilated cleanrooms are also known as 'nonunidirectional'. Unidirectional flow cleanrooms were originally known as 'laminar flow' cleanrooms. The unidirectional type of cleanroom uses very much more air than the turbulently ventilated type, and gives superior cleanliness.

The two major types of cleanroom are shown diagrammatically in Figures 1.4 and 1.5. Figure 1.4 shows a turbulently ventilated room receiving clean filtered air through air diffusers in the ceiling. This air mixes with the room air and removes airborne contamination through air extracts at the bottom of the walls.

Figure 1.4 Conventionally ventilated type of cleanroom